1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
|
// Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
#include <c10/util/Flags.h>
#include <caffe2/core/blob.h>
#include <caffe2/core/common.h>
#include <caffe2/core/init.h>
#include <caffe2/core/net.h>
#include <caffe2/core/workspace.h>
#include <caffe2/core/context_gpu.h>
#include <caffe2/utils/proto_utils.h>
#include <opencv2/opencv.hpp>
#include <cassert>
#include <chrono>
#include <iostream>
#include <string>
#include <math.h>
C10_DEFINE_string(predict_net, "", "path to model.pb");
C10_DEFINE_string(init_net, "", "path to model_init.pb");
C10_DEFINE_string(input, "", "path to input image");
using namespace std;
using namespace caffe2;
int main(int argc, char** argv) {
caffe2::GlobalInit(&argc, &argv);
string predictNetPath = FLAGS_predict_net;
string initNetPath = FLAGS_init_net;
cv::Mat input = cv::imread(FLAGS_input, cv::IMREAD_COLOR);
const int height = input.rows;
const int width = input.cols;
// FPN models require divisibility of 32
assert(height % 32 == 0 && width % 32 == 0);
const int batch = 1;
const int channels = 3;
// initialize Net and Workspace
caffe2::NetDef initNet_, predictNet_;
CAFFE_ENFORCE(ReadProtoFromFile(initNetPath, &initNet_));
CAFFE_ENFORCE(ReadProtoFromFile(predictNetPath, &predictNet_));
Workspace workSpace;
for (auto& str : predictNet_.external_input()) {
workSpace.CreateBlob(str);
}
for (auto& str : predictNet_.external_output()) {
cout<<"name is: "<<str<<endl;
}
CAFFE_ENFORCE(workSpace.CreateNet(predictNet_));
CAFFE_ENFORCE(workSpace.RunNetOnce(initNet_));
// setup inputs
auto data = BlobGetMutableTensor(workSpace.GetBlob("data"), caffe2::CPU);
data->Resize(batch, channels, height, width);
float* ptr = data->mutable_data<float>();
// HWC to CHW
for (int c = 0; c < 3; ++c) {
for (int i = 0; i < height * width; ++i) {
ptr[c * height * width + i] = static_cast<float>(input.data[3 * i + c]);
}
}
auto im_info =
BlobGetMutableTensor(workSpace.GetBlob("im_info"), caffe2::CPU);
im_info->Resize(batch, 3);
float* im_info_ptr = im_info->mutable_data<float>();
im_info_ptr[0] = height;
im_info_ptr[1] = width;
im_info_ptr[2] = 1.0;
// run the network
CAFFE_ENFORCE(workSpace.RunNet(predictNet_.name()));
// run 3 more times to benchmark
int N_benchmark = 3;
auto start_time = chrono::high_resolution_clock::now();
for (int i = 0; i < N_benchmark; ++i) {
CAFFE_ENFORCE(workSpace.RunNet(predictNet_.name()));
}
auto end_time = chrono::high_resolution_clock::now();
auto ms = std::chrono::duration_cast<std::chrono::microseconds>(
end_time - start_time)
.count();
cout << "Latency: " << ms * 1.0 / 1e6 / N_benchmark << " seconds" << endl;
// parse Mask R-CNN outputs
/*
auto& bbox = BlobGetTensor(*workSpace.GetBlob("bbox_nms"), caffe2::CPU);
auto& scores = BlobGetTensor(*workSpace.GetBlob("score_nms"), caffe2::CPU);
auto& labels = BlobGetTensor(*workSpace.GetBlob("class_nms"), caffe2::CPU);
auto& kps_score = BlobGetTensor(*workSpace.GetBlob("kps_score"), caffe2::CPU);
*/
caffe2::Tensor bbox(
workSpace.GetBlob("bbox_nms")->Get<caffe2::Tensor>(), caffe2::CPU);
caffe2::Tensor scores(
workSpace.GetBlob("score_nms")->Get<caffe2::Tensor>(), caffe2::CPU);
caffe2::Tensor labels(
workSpace.GetBlob("class_nms")->Get<caffe2::Tensor>(), caffe2::CPU);
caffe2::Tensor kps_score(
workSpace.GetBlob("kps_score")->Get<caffe2::Tensor>(), caffe2::CPU);
cout << "bbox:" << bbox.DebugString() << endl;
cout << "scores:" << scores.DebugString() << endl;
cout << "labels:" << labels.DebugString() << endl;
//(#ROIs, #keypoints, POOL_H, POOL_W)
cout << "kps_score: " << kps_score.DebugString() << endl;
//vector<float> kps_vec;
//const float* kps = kps_score.data<float>() + 0 * kps_score.size_from_dim(1);
//const float* kps_1 = kps + 0 * kps_score.size_from_dim(2);
//cout <<"the size is: "<< kps_score.size_from_dim(0) << endl;
int num_instances = bbox.sizes()[0];
for (int i = 0; i < num_instances; ++i) {
float score = scores.data<float>()[i];
if (score < 0.9)
continue; // skip them
const float* box = bbox.data<float>() + i * 4;
int label = labels.data<float>()[i];
cout << "Prediction " << i << ", xyxy=(";
cout << box[0] << ", " << box[1] << ", " << box[2] << ", " << box[3]
<< "); score=" << score << "; label=" << label << endl;
// 从heatmaps中提取特征点.
const float* kps = kps_score.data<float>() + i * kps_score.size_from_dim(1);
float bbx_offset_x = box[0];
float bbx_offset_y = box[1];
float bbx_width = (box[2]-box[0])>0?(box[2]-box[0]):1;
float bbx_heights = (box[3]-box[1])>0?(box[3]-box[1]):1;
int widths_ceil = ceil(bbx_width);
int heights_ceil = ceil(bbx_heights);
//cout<<"widths_ceil size: "<<widths_ceil<<endl;
//cout<<"heights_ceil size: "<<heights_ceil<<endl;
int num_keypoints = kps_score.size_from_dim(1)/kps_score.size_from_dim(2);
//cout << "num_keypoints: " << num_keypoints << endl;
float xy_preds[num_keypoints*2] = {0};
float width_corrections = bbx_width / widths_ceil;
float height_corrections = bbx_heights / heights_ceil;
cv::Size dsize = cv::Size(widths_ceil,heights_ceil);
//双线性插值
for(int n = 0;n<num_keypoints;++n)
{
cv::Mat src_map = cv::Mat::zeros(56,56,CV_32FC1);
cv::Mat resize_roi_map = cv::Mat::zeros(dsize,CV_32FC1);
//cout<<"intput size: "<<src_map.cols<<" , "<<src_map.rows<<endl;
//cout<<"output size: "<<resize_roi_map.cols<<" , "<<resize_roi_map.rows<<endl;
for(int j = 0;j<src_map.rows;++j)
{
for(int k = 0;k<src_map.cols;++k)
{
*((float*)(src_map.data+j*src_map.step[0]+k*src_map.step[1])) = kps[n*56*56+j*src_map.cols+k];
}
}
/*
double maxVal1 = 0;
cv::Point maxLoc1;
cv::minMaxLoc(src_map, NULL, &maxVal1, NULL, &maxLoc1);
cout << "最大值: " << maxVal1 << endl;
cout << "最大值位置: " << maxLoc1 << endl;
*/
cv::resize(src_map, resize_roi_map, dsize, 0, 0);
//默认双线性插值
cout<<"output data size :"<<resize_roi_map.size()<<endl;
double maxVal = 0;
cv::Point maxLoc;
cv::minMaxLoc(resize_roi_map, NULL, &maxVal, NULL, &maxLoc);
//cout << "插值最大值: " << maxVal << endl;
//cout << "插值最大值位置: " << maxLoc << endl;
float x_int = float(maxLoc.x);
int y_int = maxLoc.y;
//尽量减小舍入误差
float x = (float(maxLoc.x) + 0.5) * width_corrections;
float y = (float(maxLoc.y) + 0.5) * height_corrections;
cout<<"x: "<<x<<" y: "<<y<<endl;
xy_preds[n*2] = bbx_offset_x + x ;
xy_preds[n*2 + 1] = bbx_offset_y + y ;
}
for(int i = 0;i<num_keypoints;++i)
{
cout<<"pred_x: "<<xy_preds[i*2+0]<<" pred_y: "<<xy_preds[i*2+1]<<endl;
}
}
return 0;
}
|