残差网络结构

在实践中,添加过多的层后训练误差往往不降反升。即使利用批量归一化带来的数值稳定性使训练深层模型更加容易,该问题仍然存在。针对这一问题,何恺明等人提出了残差网络(ResNet)。本节记录残差网络和它的变式:稠密网络。摘自《动手学深度学习》

残差网络(ResNet)

网络模型

残差块

下图的右图是ResNet的基础块,即残差块(residual block)。在残差块中,输入可通过跨层的数据线路更快地向前传播。 ResNet沿用了VGG全3×3卷积层的设计。残差块里首先有2个有相同输出通道数的3×3卷积层。每个卷积层后接一个批量归一化层和ReLU激活函数。然后我们将输入跳过这两个卷积运算后直接加在最后的ReLU激活函数前。这样的设计要求两个卷积层的输出与输入形状一样,从而可以相加。如果想改变通道数,就需要引入一个额外的1×1卷积层来将输入变换成需要的形状后再做相加运算。

ResNet模型

ResNet的前两层跟之前介绍的GoogLeNet中的一样:在输出通道数为64、步幅为2的7×7卷积层后接步幅为2的3×3的最大池化层。不同之处在于ResNet每个卷积层后增加的批量归一化层。

GoogLeNet在后面接了4个由Inception块组成的模块。ResNet则使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。第一个模块的通道数同输入通道数一致。由于之前已经使用了步幅为2的最大池化层,所以无须减小高和宽。之后的每个模块在第一个残差块里将上一个模块的通道数翻倍,并将高和宽减半。

python实现

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import d2lzh as d2l
from mxnet import gluon, init, nd
from mxnet.gluon import nn

# 残差块的实现如下。它可以设定输出通道数、是否使用额外的1×1卷积层来修改通道数以及卷积层的步幅。

class Residual(nn.Block):  # 本类已保存在d2lzh包中方便以后使用
    def __init__(self, num_channels, use_1x1conv=False, strides=1, **kwargs):
        super(Residual, self).__init__(**kwargs)
        self.conv1 = nn.Conv2D(num_channels, kernel_size=3, padding=1,
                               strides=strides)
        self.conv2 = nn.Conv2D(num_channels, kernel_size=3, padding=1)
        if use_1x1conv:
            self.conv3 = nn.Conv2D(num_channels, kernel_size=1,
                                   strides=strides)
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm()
        self.bn2 = nn.BatchNorm()

    def forward(self, X):
        Y = nd.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3:
            X = self.conv3(X)
        return nd.relu(Y + X)
        
# ResNet模型实现        
net = nn.Sequential()
net.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3),
        nn.BatchNorm(), nn.Activation('relu'),
        nn.MaxPool2D(pool_size=3, strides=2, padding=1))
        
def resnet_block(num_channels, num_residuals, first_block=False):
    blk = nn.Sequential()
    for i in range(num_residuals):
        if i == 0 and not first_block:
            blk.add(Residual(num_channels, use_1x1conv=True, strides=2))
        else:
            blk.add(Residual(num_channels)) # 注意,这里对第一个模块做了特别处理。因为前面的最大池化层已经将输入宽高减半,就不需要使用1x1卷积了。
    return blk      
    
net.add(resnet_block(64, 2, first_block=True),
        resnet_block(128, 2),
        resnet_block(256, 2),
        resnet_block(512, 2)) 
        
# 最后,与GoogLeNet一样,加入全局平均池化层后接上全连接层输出。        
net.add(nn.GlobalAvgPool2D(), nn.Dense(10))     

# 获取数据和训练模型
lr, num_epochs, batch_size, ctx = 0.05, 5, 256, d2l.try_gpu()
net.initialize(force_reinit=True, ctx=ctx, init=init.Xavier())
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch5(net, train_iter, test_iter, batch_size, trainer, ctx,
              num_epochs)

稠密连接网络(DenseNet)

图中将部分前后相邻的运算抽象为模块𝐴和模块𝐵。与ResNet的主要区别在于,DenseNet里模块𝐵的输出不是像ResNet那样和模块𝐴的输出相加,而是在通道维上连结。这样模块𝐴的输出可以直接传入模块𝐵后面的层。在这个设计里,模块𝐴直接跟模块𝐵后面的所有层连接在了一起。这也是它被称为“稠密连接”的原因。

DenseNet的主要构建模块是稠密块(dense block)和过渡层(transition layer)。前者定义了输入和输出是如何连结的,后者则用来控制通道数,使之不过大。

模型结构

稠密块

DenseNet使用了ResNet改良版的“批量归一化、激活和卷积”结构。稠密块由多个conv_block组成,每块使用相同的输出通道数。但在前向计算时,我们将每块的输入和输出在通道维上连结。

过渡层

由于每个稠密块都会带来通道数的增加,使用过多则会带来过于复杂的模型。过渡层用来控制模型复杂度。它通过1×1卷积层来减小通道数,并使用步幅为2的平均池化层减半高和宽,从而进一步降低模型复杂度。

DenseNet模型

DenseNet首先使用同ResNet一样的单卷积层和最大池化层。类似于ResNet接下来使用的4个残差块,DenseNet使用的是4个稠密块。同ResNet一样,我们可以设置每个稠密块使用多少个卷积层。 ResNet里通过步幅为2的残差块在每个模块之间减小高和宽。这里我们则使用过渡层来减半高和宽,并减半通道数。最后,同ResNet一样,最后接上全局池化层和全连接层来输出。

python实现

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import d2lzh as d2l
from mxnet import gluon, init, nd
from mxnet.gluon import nn

# DenseNet使用了ResNet改良版的“批量归一化、激活和卷积”结构,我们首先在conv_block函数里实现这个结构。
def conv_block(num_channels):
    blk = nn.Sequential()
    blk.add(nn.BatchNorm(), nn.Activation('relu'),
            nn.Conv2D(num_channels, kernel_size=3, padding=1))
    return blk
    
# 稠密块由多个conv_block组成,每块使用相同的输出通道数。但在前向计算时,我们将每块的输入和输出在通道维上连结。  

class DenseBlock(nn.Block):
    def __init__(self, num_convs, num_channels, **kwargs):
        super(DenseBlock, self).__init__(**kwargs)
        self.net = nn.Sequential()
        for _ in range(num_convs):
            self.net.add(conv_block(num_channels))

    def forward(self, X):
        for blk in self.net:
            Y = blk(X)
            X = nd.concat(X, Y, dim=1)  # 在通道维上将输入和输出连结
        return X
        
# 卷积块的通道数控制了输出通道数相对于输入通道数的增长,因此也被称为增长率(growth rate)。稠密块中的每个卷积层的输出通道数最后会累加到稠密块的最后输出通道那里(连结) 


# 通过1×1卷积层来减小通道数,并使用步幅为2的平均池化层减半高和宽,从而进一步降低模型复杂度。(加在稠密块后面)
def transition_block(num_channels):
    blk = nn.Sequential()
    blk.add(nn.BatchNorm(), nn.Activation('relu'),
            nn.Conv2D(num_channels, kernel_size=1),
            nn.AvgPool2D(pool_size=2, strides=2))
    return blk
    
    
# DenseNet模型,DenseNet首先使用同ResNet一样的单卷积层和最大池化层。    
net = nn.Sequential()
net.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3),
        nn.BatchNorm(), nn.Activation('relu'),
        nn.MaxPool2D(pool_size=3, strides=2, padding=1))   


# 类似于ResNet接下来使用的4个残差块,DenseNet使用的是4个稠密块。同ResNet一样,我们可以设置每个稠密块使用多少个卷积层。这里我们设成4,从而与上一节的ResNet-18保持一致。稠密块里的卷积层通道数(即增长率)设为32,所以每个稠密块将增加128个通道。

# ResNet里通过步幅为2的残差块在每个模块之间减小高和宽。这里我们则使用过渡层来减半高和宽,并减半通道数。

num_channels, growth_rate = 64, 32  # num_channels为当前的通道数
num_convs_in_dense_blocks = [4, 4, 4, 4]

for i, num_convs in enumerate(num_convs_in_dense_blocks):
    net.add(DenseBlock(num_convs, growth_rate))
    # 上一个稠密块的输出通道数
    num_channels += num_convs * growth_rate
    # 在稠密块之间加入通道数减半的过渡层
    if i != len(num_convs_in_dense_blocks) - 1:
        num_channels //= 2
        net.add(transition_block(num_channels))    
# 同ResNet一样,最后接上全局池化层和全连接层来输出。        
net.add(nn.BatchNorm(), nn.Activation('relu'), nn.GlobalAvgPool2D(),
        nn.Dense(10))   
        
lr, num_epochs, batch_size, ctx = 0.1, 5, 256, d2l.try_gpu()
net.initialize(ctx=ctx, init=init.Xavier())
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch5(net, train_iter, test_iter, batch_size, trainer, ctx,
              num_epochs)        
updatedupdated2019-12-282019-12-28