一些3d Face的相关论文,不定期更新。
3D Face
Surveys & Doctoral Thesis
-
Face Image Analysis using a Multiple Features Fitting Strategy(2005, Basel)
-
3D Face Modelling for 2D+3D Face Recognition(2007, Surrey)
-
Image Based 3D Face Reconstruction: A Survey(IJIG2009, Georgios Stylianou, Andreas Lanitis, EUC, CUT)
early 3D facial acquisition approaches
-
animation reconstruction of deformable surfaces(2010, Hao Li, ETHz)
-
Inverse Rendering of Faces with a 3D Morphable Model(2012, Oswald Aldrian, York)
-
Digital Geometry Processing Theory and Applications(2012, Kun Zhou, Zhengjiang, 中文)
-
State of the Art on Monocular 3D Face Reconstruction, Tracking, and Applications
State of the Art on 3D Reconstruction with RGB-D Cameras(EG2018, MZ, CT, MPI, Stanford, TUM, Disney, Technicolor, UEN) [talks]
Papers & Codes
Reconstruction&3D Alignment&Correspondences
1998 - 2015
-
A Morphable Model For The Synthesis Of 3D Faces
(SIGGRAPH1998, V Blanz, T Vetter , MPI)
3dmm,analysis-by-synthesis(cascaded, coarse to fine, using texture information), mid-detail
-
Efficient, Robust and Accurate Fitting of a 3D Morphable Model
(ICCV2003, S Romdhani, T Vetter , Basel)
3dmm, fitting Algorithm needs: Efficient, Robust, Accurate, Automatic. Mid-detail
-
Estimating 3D Shape and Texture Using Pixel Intensity, Edges, Specular Highlights, Texture Constraints and a Prior
(CVPR2005, S Romdhani, T Vetter , Basel)
3dmm, multiple features
-
A 3D Face Model for Pose and Illumination Invariant Face Recognition
(AVSS2009, Paysan, P., Knothe, R., Amberg, B., Romdhani, S., & Vetter, T. , Basel) [data](https://faces.cs.unibas.ch/bfm/)
-
3D Face Reconstruction from a Single Image Using a Single Reference Face Shape
(TPAMI2011, I Kemelmacher-Shlizerman, Basri R, UW)
template, sfs, texture information, mid-detail
-
Face Reconstruction in the Wild
(ICCV2011, Kemelmacher-Shlizerman I, Seitz S M , UW)
collection, sparse correspondence, warp template, low-rank approximation(photometric stereo, for expression normalization), mid-detail
-
A FACS Valid 3D Dynamic Action Unit Database with Applications to 3D Dynamic Morphable Facial Modeling
(ICCV2011, Cosker D, Krumhuber E, Hilton A. , UofSurrey)
aam, expression
-
Viewing Real-World Faces in 3D
(ICCV2013, T Hassner, Open U Israel)
template, sparse correspondence, pose adjustment, depth optimization(SIFT)
-
Improving 3D Face Details based on Normal Map of Hetero-source Images
(CVPRW2014, Yang, C., Chen, J., Su, N., & Su, G. , Tsinghua University)
-
Total Moving Face Reconstruction
(LNCS2014, Suwajanakorn S, Kemelmacher-Shlizerman I, Seitz S M. , Washington)
video(collections), template, average shape, pose estimation, 3d flow(correspondence), refinement, high-detail
-
FaceWarehouse: a 3D Facial Expression Database for Visual Computing
(VCG2014, Cao, C., Weng, Y., Zhou, S., Tong, Y., & Zhou, K., Zhejiang) [data]
-
Intrinsic Face Image Decomposition with Human Face Priors
(ECCV2014, Li C, Zhou K, Lin S , Zhejiang)
-
Fitting 3D Morphable Models using Local Features
(ICIP2015, Huber, P., Feng, Z. H., Christmas, W., Kittler, J., & Ratsch, M, Surrey)
sparse correspondence, 3dmm, regression
-
What Makes Tom Hanks Look Like Tom Hanks
(ICCV2015, Suwajanakorn S, Seitz S M, Kemelmacher-Shlizerman I. , Washington)
collection, template, average model, 3D flow, correspondence, deformation vector, TPS, expression sililarity weighted, high-frequency details, Laplacian pyramid
-
Unconstrained Realtime Facial Performance Capture
(CVPR2015, Hsieh, P. L., Ma, C., Yu, J., & Li, H. , USC)
video,image collections, occlusion, segmentation, landmarks
-
Unconstrained 3D Face Reconstruction
(CVPR2015, Roth, J., Tong, Y., & Liu, X, MSU)
collection, sparse correspondence(landmarks), template, photometric stereo(SVD), matrix completion,
-
Pose-Invariant 3D Face Alignment
(ICCV2015, Jourabloo, A., & Liu, X., MSU)
alignment, dense correspondence, visibility, cascaded regressor, 3DPDM.
-
Discriminative 3D Morphable Model Fitting
(CVPR2015)
2016
#CVPR
-
Large-pose Face Alignment via CNN-based Dense 3D Model Fitting
(CVPR2016, Jourabloo, A., & Liu, X., MSU)
alignment, 3dmm
-
Automated 3D Face Reconstruction from Multiple Images using Quality Measures
(CVPR2016, Piotraschke, M., & Blanz, V , Siegen)
-
A Robust Multilinear Model Learning Framework for 3D Faces
(CVPR2016, Bolkart, T., & Wuhrer, S., Saarland)
-
Face Alignment Across Large Poses: A 3D Solution
(CVPR2016, Zhu, X., Lei, Z., Liu, X., Shi, H., & Li, S. Z. , MSU, CASIA)
-
Adaptive 3D Face Reconstruction from Unconstrained Photo Collections
(CVPR2016, Roth, J., Tong, Y., & Liu, X, MSU)
landmarks, 3dmm, coarse-to-fine,photometric stereo, time: 7 minutes
-
Augmented Blendshapes for Real-time Simultaneous 3D Head Modeling and Facial Motion Capture
(CVPR2016, Thomas, D., & Taniguchi, R. I. , Kyushu University)
-
A 3D Morphable Model learnt from 10,000 faces
(CVPR2016, Booth, J., Roussos, A., Zafeiriou, S., Ponniah, A., & Dunaway, D., ICL)
#ECCV
-
Joint Face Alignment and 3D Face Reconstruction
(ECCV2016, Liu, F., Zeng, D., Zhao, Q., & Liu, X, MSU, Sichuan U)
alignment, landmarks
-
Real-Time Facial Segmentation and Performance Capture from RGB Input
(ECCV2016, Saito, S., Li, T., & Li, H. , USC)
occlusions, tracking
#Others
-
3D Face Reconstruction by Learning from Synthetic Data
(3DV2016, Richardson, E., Sela, M., & Kimmel, R, IIT)
3dmm, cnn, regress 3dmm parameters, sfs
-
Face Reconstruction on Mobile Devices Using a Height Map Shape Model and Fast Regularization
(3DV2016, Maninchedda, F., Häne, C., Oswald, M. R., & Pollefeys, M., ETH)
-
A Multiresolution 3D Morphable Face Model and Fitting Framework [code]
(IJCV2016, Huber, P., Hu, G., Tena, R., Mortazavian, P., Koppen, P., Christmas, W. J., ... & Kittler, J. ,Surrey)
-
Rapid Photorealistic Blendshape Modeling from RGB-D Sensors
(2016, USC)
-
3D Face Reconstruction with Region Based Best Fit Blending Using Mobile Phone for Virtual Reality Based Social Media
(2016, Anbarjafari, G., Haamer, R. E., Lusi, I., Tikk, T., & Valgma, L. , Turkey)
landmarks, uv texture, region
2017
#CVPR
-
3D Face Morphable Models “In-the-Wild”
(CVPR2017, Booth, J., Antonakos, E., Ploumpis, S., Trigeorgis, G., Panagakis, Y., & Zafeiriou, S., ICL)
3dmm, register, UV
-
Face Normals “in-the-wild” using Fully Convolutional Networks
(CVPR2017, Trigeorgis, G., Snape, P., Kokkinos, I., & Zafeiriou, S. , ICL)
-
Regressing Robust and Discriminative 3D Morphable Models with a very Deep Neural Network
(CVPR2017, Tran, A. T., Hassner, T., Masi, I., & Medioni, G. , USC)
-
Fast 3D Reconstruction of Faces with Glasses
(CVPR2017, Maninchedda, F., Oswald, M. R., & Pollefeys, M., ETH)
-
DenseReg: Fully Convolutional Dense Shape Regression In-the-Wild
(CVPR2017, Güler, R. A., Trigeorgis, G., Antonakos, E., Snape, P., Zafeiriou, S., & Kokkinos, I. , ICL)
dense correspondence, uv
-
Learning Detailed Face Reconstruction from a Single Image
(CVPR2017, Richardson, E., Sela, M., Or-El, R., & Kimmel, R. , Washington)
-
End-to-end 3D face reconstruction with deep neural networks
(CVPR2017, Dou, P., Shah, S. K., & Kakadiaris, I. A., UofHouston)
3dmm, dl, directly learn 3dmm parameters
-
A Generative Model for Depth-based Robust 3D Facial Pose Tracking
(CVPR2017, Cai, L. S. J., Pavlovic, T. J. C. V., & Ngan, K. N. , CUHK)
occlusions
#ICCV
-
3D Morphable Models as Spatial Transformer Networks
(ICCV2017, Bas, A., Huber, P., Smith, W. A., Awais, M., & Kittler, J. , York, Surrey )
dl, cnn, uv texture, landmarks, stn, 3dmm
-
Faster Than Real-time Facial Alignment: A 3D Spatial Transformer Network Approach in Unconstrained Poses
(ICCV2017, Bhagavatula, C., Zhu, C., Luu, K., & Savvides, M., CMU)
-
Pose-Invariant Face Alignment with a Single CNN
(ICCV2017, Jourabloo, A., Ye, M., Liu, X., & Ren, L. , MSU)
alignment, 3dmm, dl, cnn
-
Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression code
(ICCV2017, Jackson, A. S., Bulat, A., Argyriou, V., & Tzimiropoulos, G. , Nottingham)
end-to-end, 3dmm, dl, cnn, landmarks, voxel
-
Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation
(ICCV2017, Sela, M., Richardson, E., & Kimmel, R. , IIT)
-
MoFA: Model-based Deep Convolutional Face Autoencoder for Unsupervised Monocular Reconstruction
(ICCV2017, Tewari, A., Zollhöfer, M., Kim, H., Garrido, P., Bernard, F., Pérez, P., & Theobalt, C. , MPI)
-
Dense Face Alignment code
(ICCVW2017, Liu, Y., Jourabloo, A., Ren, W., & Liu, X. , MSU)
-
Realtime Dynamic 3D Facial Reconstruction for Monocular Video In-the-Wild
(ICCVW2017)
-
Learning Dense Facial Correspondences in Unconstrained Images
(ICCV2017, Yu, R., Saito, S., Li, H., Ceylan, D., & Li, H. , USC)
dense correspondence
#others
-
Large Scale 3D Morphable Models [data](https://faces.cs.unibas.ch/bfm/)
(IJCV2017, Booth, J., Roussos, A., Ponniah, A., Dunaway, D., & Zafeiriou, S. , ICL)
for alignment, template, cnn, dl, sparse correspondence, landmarks, tps warping
-
What does 2D geometric information really tell us about 3D face shape? (2017, Bas, A., & Smith, W. A )
shape from landmarks, shape from contours
-
Pix2Face: Direct 3D Face Model Estimation
(2017)
dense correspondence, 3dmm
-
3D Face Reconstruction with Geometry Details from a Single Image
(TIP2017, Jiang, L., Zhang, J., Deng, B., Li, H., & Liu, L. , USC, USTC)
coarse-to-fine, landmarks, corrective deformatio, sfs
2018
#CVPR
-
Unsupervised Training for 3D Morphable Model Regression code
(CVPR2018, Genova, K., Cole, F., Maschinot, A., Sarna, A., Vlasic, D., & Freeman, W. T , Google)
-
4DFAB: A Large Scale 4D Database for Facial Expression Analysis and Biometric Applications data
(CVPR2018, Cheng, S., Kotsia, I., Pantic, M., & Zafeiriou, S., ICL)
-
Sparse Photometric 3D Face Reconstruction Guided by Morphable Models
(CVPR2018, Cao, X., Chen, Z., Chen, A., Chen, X., Li, S., & Yu, J. , shanghaitech)
5 input images, 3dmm, shadow processing, light calibration, photometric stereo, denoising
-
Disentangling Features in 3D Face Shapes for Joint Face Reconstruction and Recognition
(CVPR2018, Liu, F., Zhu, R., Zeng, D., Zhao, Q., & Liu, X. , MSU, Sichuan)
-
Mesoscopic Facial Geometry Inference Using Deep Neural Networks
(CVPR2018, Hao Li, USC)
high-detail, dl, scan, uv texture, displacement
-
Self-supervised Multi-level Face Model Learning for Monocular Reconstruction at over 250 Hz
(CVPR2018, Tewari, A., Zollhöfer, M., Garrido, P., Bernard, F., Kim, H., Pérez, P., & Theobalt, C., MPI)
-
SfSNet : Learning Shape, Reflectance and Illuminance of Faces in the Wild
(CVPR2018, Sengupta, S., Kanazawa, A., Castillo, C. D., & Jacobs, D. , Maryland, UCB )
-
Probabilistic Joint Face-Skull Modelling for Facial Reconstruction
(CVPR2018, Madsen, D., Lüthi, M., Schneider, A., & Vetter, T. , Basel)
-
Alive Caricature from 2D to 3D
(CVPR2018, Wu, Q., Zhang, J., Lai, Y. K., Zheng, J., & Cai, J, USTC)
-
Nonlinear 3D Face Morphable Model
(CVPR2018, Tran, L., & Liu, X. , MSU)
-
InverseFaceNet: Deep Monocular Inverse Face Rendering
(CVPR2018, Kim, H., Zollhöfer, M., Tewari, A., Thies, J., Richardt, C., & Theobalt, C. , MPI)
Self-Supervised Bootstrapping
-
Extreme 3D Face Reconstruction: Looking Past Occlusions
(CVPR2018, Tran, A. T., Hassner, T., Masi, I., Paz, E., Nirkin, Y., & Medioni, G. , USC)
-
Total Capture: A 3D Deformation Model for Tracking Faces, Hands, and Bodies
(CVPR2018, best student paper, Joo, H., Simon, T., & Sheikh, Y. , CMU)
-
Modeling Facial Geometry using Compositional VAEs
(CVPR2018, Bagautdinov, T., Wu, C., Saragih, J., Fua, P., & Sheikh, Y., EPEL, FRL )
#ECCV
-
3D Face Reconstruction from Light Field Images: A Model-free Approach
(ECCV2018, Feng, M., Gilani, S. Z., Wang, Y., & Mian, A., Western Australia, Hunan)
epopolar plane images
-
Generating 3D Faces using Convolutional Mesh Autoencoders [code]
(ECCV2018, Ranjan, A., Bolkart, T., Sanyal, S., & Black, M. J., MPI)
-
Joint 3D Face Reconstruction and Dense Alignment with Position Map Regression Network [code]
(ECCV2018, Feng, Y., Wu, F., Shao, X., Wang, Y., & Zhou, X., SJTU)
#others
-
Morphable Face Models - An Open Framework
(FG2018, Gerig, T., Morel-Forster, A., Blumer, C., Egger, B., Luthi, M., Schönborn, S., & Vetter, T. , Basel)
-
CNN-based Real-time Dense Face Reconstruction with Inverse-rendered Photo-realistic Face Images [data&code]
(TPAMI2018, Yudong Guo, Juyong Zhang, Jianfei Cai, Boyi Jiang, Jianmin Zheng, USTC)
-
Multilinear Autoencoder for 3D Face Model Learning(WACV 2018, Universite Grenoble Alpes (LJK), France)
3d scan to registered mesh. dl. height map
-
On Face Segmentation, Face Swapping, and Face Perception(AFGR,2018, HT)
-
Evaluation of Dense 3D Reconstruction from 2D Face Images in the Wild(FG2018) data
#arxiv
-
Joint Face Alignment and 3D Face Reconstruction with Application to Face Recognition(2017, Feng Liu, Xiaoming Liu)
-
Convolutional Point-set Representation: A Convolutional Bridge Between a Densely Annotated Image and 3D Face Alignment(20180317)
-
Unsupervised Depth Estimation, 3D Face Rotation and Replacement(20180325)
Production-level Reconstruction
more in computer graphics
-
High-Quality Single-Shot Capture of Facial Geometry(TOG2010, ETHZ, Disney)
cg, high-detail,stereo system, calibration, surface refinement, normal direction, mesoscopic
-
Multiview Face Capture using Polarized Spherical Gradient Illumination(TOG2011)
image collecitons
-
High-Quality Passive Facial Performance Capture using Anchor Frames(SIGGRAPH2011, ETHZ, Disney)
cg, stereo,anchor frame, tracking, mesh progration, physical movement, motion estimation, refinement
-
Lightweight binocular facial perfor- mance capture under uncontrolled lighting(TOG2012, MPI)
cg, high-detail, stereo, template,flow,data term, geometry term, smoothness term, mesh tracking, motion refinement, shape refinement, sfs
-
Reconstructing Detailed Dynamic Face Geometry from Monocular Video(TOG2013, MPI)
cg, dynamic, high-detail, blend model, sparse correspondence, dense correspondence(appearance matching, LBP), pose estimation , shape refinement, sfs
-
3D Shape Regression for Real-time Facial Animation(TOG2013, ZJU)
-
Real-Time High-Fidelity Facial Performance Capture (TOG2015, ZJU)
cg, landmarks, optical flow, train a regressor to learn detail
-
Dynamic 3D Avatar Creation from Hand-held Video Input(TOG2015, EPEL)
cg, dynamic, mobile, high-detail, avatar, 3dmm,sparse correspondence, eye mesh, tracking, refinement, sfs, detail map
-
Reconstruction of Personalized 3D Face Rigs from Monocular Video(TOG2016, MPI)
parametric shape prior, coarse-scale reconstruction, fine-scale(sfs), coase->medium->fine, 3dmm, corrective
-
Production-Level Facial Performance Capture Using Deep Convolutional Neural Networks(ASCA2017, USC)
-
Multi-View Stereo on Consistent Face Topology(EG2017, USC)
cg, high-detail, landmarks, template, pose estimation, refinement
-
Avatar Digitization From a Single Image For Real-Time Rendering(SIGGRAPH Asia 2017, USC)
cg, avatar, segmentation, head, hair, 3DMM, landmarks, texture completion
-
Learning a model of facial shape and expression from 4D scans(TOG2017, USC, MPI)
-
DeepSketch2Face: A Deep Learning Based Sketching System for 3D Face and Caricature Modeling(SIGGRAPH2017)
-
High-Fidelity Facial Reflectance and Geometry Inference From an Unconstrained Image(SIGGRAPH2018, USC)
Texture
3D-aid texture generation/ UV texture completion
Keys: GAN
-
Face Synthesis from Facial Identity Features(CVPR2017, google)
3dmm, dl, landmarks
-
Photorealistic Facial Texture Inference Using Deep Neural Networks(CVPR2017, Hao Li, USC)
texture completion
-
UV-GAN: Adversarial Facial UV Map Completion for Pose-invariant Face Recognition(CVPR2018, SZ, ICL)
gan, 3dmm, uv texture completion
-
Multi-Attribute Robust Component Analysis for Facial UV Maps(2017, SZ, ICL)
-
Realistic Dynamic Facial Textures from a Single Image using GANs(CVPR2017, Hao Li, USC, DeepMind)
-
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model(2018)
-
Side Information for Face Completion: a Robust PCA Approach(20180120, SZ, ICL)
Transfer&Reenactment(Applications)
-
Face Transfer with Multilinear Models (SIGGRAPH2005)
Cartesian product(ID x EX x VI)
-
Online Modeling For Realtime Facial Animation(TOG2013)
rgbd, blendshape, corrective field
-
Displaced Dynamic Expression Regression for Real-time Facial Tracking and Animation(SIGGRAPH2014)
-
Real-time Expression Transfer for Facial Reenactment(SIGGRAPH AISA 2015)
-
Face2Face: Real-time Face Capture and Reenactment of RGB Videos(CVPR2016)
capture, transfer, 3dmm, landmarks, texture, expression, mouth retrieval
-
Synthesizing Obama: Learning Lip Sync from Audio(SIGGRAPH2017)
-
Deep Video Portrait(SIGGRAPH2018)
-
HeadOn: Real-time Reenactment of Human Portrait Videos(SIGGRAPH2018)
3D-aid 2D face recognition
-
Tom-vs-Pete Classifiers and Identity-Preserving Alignment for Face Verification(ECCV2012, Columbia University)
-
Face Recognition from a Single Training Image under Arbitrary Unknown Lighting Using Spherical Harmonics(PAMI2006)
-
3D-aided face recognition robust to expression and pose variations (CVPR2014)
-
Effective 3D based Frontalization for Unconstrained Face Recognition(ICPR2016, MICC, Florence)
-
Effective Face Frontalization in Unconstrained Images(CVPR2015, TH, Israel)
-
Do We Really Need to Collect Millions of Faces for Effective Face Recognition(ECCV2016, TH, USC, Israel)
-
High-Fidelity Pose and Expression Normalization for Face Recognition in the Wild(CVPR2015)
-
When 3D-Aided 2D Face Recognition Meets Deep Learning: An extended UR2D for Pose-Invariant Face Recognition(2017)
-
Towards Large-Pose Face Frontalization in the Wild
-
Fully Automatic Pose-Invariant Face Recognition via 3D Pose Normalization (ICCV2011, Cambridge, MA, USA)
3D face recognition
-
Face Identification across Different Poses and Illuminations with a 3D Morphable Model(Automatic Face and Gesture Recognition2002, VB&TV)
-
Preliminary Face Recognition Grand Challenge Results(2006)
-
expression Invariant 3D Face Recognition with a Morphable Model(FG2008, TV, Basel)
-
Bosphorus Database for 3D Face Analysis(2008)data
-
Robust Learning from Normals for 3D face recognition(ECCV2012, SZ, ICL)
-
Static and dynamic 3D facial expression recognition: A comprehensive survey(IVC2012, SZ, LijunYin)
-
Deep 3D Face Identification(2017, USC)
-
Robust Face Recognition with Deeply Normalized Depth Images (2018)
depth image(front&neural)
-
Learning from Millions of 3D Scans for Large-scale 3D Face Recognition(CVPR2018, Western Australia)