视觉 SLAM 主要分为视觉前端和优化后端。前端也称为视觉里程计(VO)。它根据相邻图像的信息,估计出粗略的相机运动,给后端提供较好的初始值。本节将记录从特征点法入手,学习如何提取、匹配图像特征点,然后估计两帧之间的相机运动和场景结构,从而实现一个基本的两帧间视觉里程计。摘自《视觉SLAM十四讲》。
特征点由关键点(Key-point)和描述子(Descriptor)两部分组成。比方说,当我们谈论 SIFT 特征时,是指“提取 SIFT 关键点,并计算 SIFT 描述子”两件事情。关键点是指该特征点在图像里的位置,有些特征点还具有朝向、大小等信息。描述子通常是一个向量,按照某种人为设计的方式,描述了该关键点周围像素的信息。描述子是按照“外观相似的特征应该有相似的描述子”的原则设计的。因此,只要两个特征点的描述子在向量空间上的距离相近,就可以认为它们是同样的特征点。
特征匹配是视觉 SLAM 中极为关键的一步,宽泛地说,特征匹配解决了 SLAM 中的数据关联问题(data association),即确定当前看到的路标与之前看到的路标之间的对应关系。通过对图像与图像,或者图像与地图之间的描述子进行准确的匹配,我们可以为后续的姿态估计,优化等操作减轻大量负担。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
|
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
using namespace std;
using namespace cv;
int main ( int argc, char** argv )
{
if ( argc != 3 )
{
cout<<"usage: feature_extraction img1 img2"<<endl;
return 1;
}
//-- 读取图像
Mat img_1 = imread ( argv[1], CV_LOAD_IMAGE_COLOR );
Mat img_2 = imread ( argv[2], CV_LOAD_IMAGE_COLOR );
//-- 初始化
std::vector<KeyPoint> keypoints_1, keypoints_2;
Mat descriptors_1, descriptors_2;
Ptr<FeatureDetector> detector = ORB::create();
Ptr<DescriptorExtractor> descriptor = ORB::create();
// Ptr<FeatureDetector> detector = FeatureDetector::create(detector_name);
// Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create(descriptor_name);
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create ( "BruteForce-Hamming" );
//-- 第一步:检测 Oriented FAST 角点位置
detector->detect ( img_1,keypoints_1 );
detector->detect ( img_2,keypoints_2 );
//-- 第二步:根据角点位置计算 BRIEF 描述子
descriptor->compute ( img_1, keypoints_1, descriptors_1 );
descriptor->compute ( img_2, keypoints_2, descriptors_2 );
Mat outimg1;
drawKeypoints( img_1, keypoints_1, outimg1, Scalar::all(-1), DrawMatchesFlags::DEFAULT );
imshow("ORB特征点",outimg1);
//-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
vector<DMatch> matches;
//BFMatcher matcher ( NORM_HAMMING );
matcher->match ( descriptors_1, descriptors_2, matches );
//-- 第四步:匹配点对筛选
double min_dist=10000, max_dist=0;
//找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
for ( int i = 0; i < descriptors_1.rows; i++ )
{
double dist = matches[i].distance;
if ( dist < min_dist ) min_dist = dist;
if ( dist > max_dist ) max_dist = dist;
}
// 仅供娱乐的写法
min_dist = min_element( matches.begin(), matches.end(), [](const DMatch& m1, const DMatch& m2) {return m1.distance<m2.distance;} )->distance;
max_dist = max_element( matches.begin(), matches.end(), [](const DMatch& m1, const DMatch& m2) {return m1.distance<m2.distance;} )->distance;
printf ( "-- Max dist : %f \n", max_dist );
printf ( "-- Min dist : %f \n", min_dist );
//当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
std::vector< DMatch > good_matches;
for ( int i = 0; i < descriptors_1.rows; i++ )
{
if ( matches[i].distance <= max ( 2*min_dist, 30.0 ) )
{
good_matches.push_back ( matches[i] );
}
}
//-- 第五步:绘制匹配结果
Mat img_match;
Mat img_goodmatch;
drawMatches ( img_1, keypoints_1, img_2, keypoints_2, matches, img_match );
drawMatches ( img_1, keypoints_1, img_2, keypoints_2, good_matches, img_goodmatch );
imshow ( "所有匹配点对", img_match );
imshow ( "优化后匹配点对", img_goodmatch );
waitKey(0);
return 0;
}
|
我们希望根据匹配的点对,估计相机的运动。
-
当相机为单目时,我们只知道 2D 的像素坐标,因而问题是根据两组 2D 点估计运动。该问题用对极几何来解决。(无深度信息)
-
当相机为双目、RGB-D 时,或者我们通过某种方法得到了距离信息,那问题就是根据两组 3D 点估计运动。该问题通常用 ICP 来解决。(两张深度图)
-
如果我们有 3D 点和它们在相机的投影位置,也能估计相机的运动。该问题通过 PnP求解。(单张深度图)
如下图:
在第一帧的坐标系下,设 P 的空间位置为:
$$
\boldsymbol{P}=[X, Y, Z]^{T}
$$
以第一个相机坐标系作为基准,空间点对应的像素坐标:
$$
s_{1} \boldsymbol{p}_{1}=\boldsymbol{K} \boldsymbol{P}, \quad s_{2} \boldsymbol{p}_{2}=\boldsymbol{K}(\boldsymbol{R} \boldsymbol{P}+\boldsymbol{t})
$$
在齐次坐标系下可以忽略掉常数项:
$$
\boldsymbol{p}_{1}=\boldsymbol{K} \boldsymbol{P}, \quad \boldsymbol{p}_{2}=\boldsymbol{K}(\boldsymbol{R} \boldsymbol{P}+\boldsymbol{t})
$$
取:
$$
\boldsymbol{x}_{1}=\boldsymbol{K}^{-1} \boldsymbol{p}_{1}, \quad \boldsymbol{x}_{2}=\boldsymbol{K}^{-1} \boldsymbol{p}_{2}
$$
化简有:
$$
\boldsymbol{x}_{2}=\boldsymbol{R} \boldsymbol{x}_{1}+\boldsymbol{t}
$$
两边同时左乘$\boldsymbol{x}_{2}^{T} $:
$$
\boldsymbol{x}_{2}^{T} \boldsymbol{t}^{\wedge} \boldsymbol{x}_{2}=\boldsymbol{x}_{2}^{T} \boldsymbol{t}^{\wedge} \boldsymbol{R} \boldsymbol{x}_{1}
$$
两侧同时再左乘$\boldsymbol{x}_{2}^{T}$:
$$
\boldsymbol{x}_{2}^{T} \boldsymbol{t}^{\wedge} \boldsymbol{x}_{2}=\boldsymbol{x}_{2}^{T} \boldsymbol{t}^{\wedge} \boldsymbol{R} \boldsymbol{x}_{1}
$$
观察等式左侧,$\boldsymbol{t}^{\wedge} \boldsymbol{x}_{2}$是一个与 $\boldsymbol{t}$和 $\boldsymbol{x}_{2}$ 都垂直的向量。把它再和$\boldsymbol{x}_{2}$ 做内积时,将得到 0。
$$
\boldsymbol{x}_{2}^{T} \boldsymbol{t}^{\wedge} \boldsymbol{R} \boldsymbol{x}_{1}=0
$$
即:
$$
\boldsymbol{p}_{2}^{T} \boldsymbol{K}^{-T} \boldsymbol{t}^{\wedge} \boldsymbol{R} \boldsymbol{K}^{-1} \boldsymbol{p}_{1}=0
$$
令:
$$
\boldsymbol{E}=\boldsymbol{t}^{\wedge} \boldsymbol{R}, \quad \boldsymbol{F}=\boldsymbol{K}^{-T} \boldsymbol{E} \boldsymbol{K}^{-1}, \quad \boldsymbol{x}_{2}^{T} \boldsymbol{E} \boldsymbol{x}_{1}=\boldsymbol{p}_{2}^{T} \boldsymbol{F} \boldsymbol{p}_{1}=0
$$
这两个式子都称为对极约束,它以形式简洁著名。它的几何意义是$O_{1}, P, O_{2}$ 三者共
面。对极约束中同时包含了平移和旋转。
对极约束简洁地给出了两个匹配点的空间位置关系。于是,相机位姿估计问题变为以
下两步:
-
根据配对点的像素位置,求出 $\boldsymbol{E}$或者 $\boldsymbol{F}$;
-
根据 $\boldsymbol{E}$ 或者 $\boldsymbol{F}$ ,求出 $\boldsymbol{R}$,$\boldsymbol{t}$。
由于 $\boldsymbol{E}$ 和 $\boldsymbol{E}$ 只相差了相机内参,而内参在 SLAM 中通常是已知的 ,所以实践当往往使用形式更简单的 $\boldsymbol{E}$。
E 具有五个自由度的事实,表明我们最少可以用五对点来求解 E。但是,E 的内在性质是一种非线性性质,在求解线性方程时会带来麻烦,因此,也可以只考虑它的尺度等价性,使用八对点来估计 E——这就是经典的八点法(Eight-point-algorithm)。
根据已经估得的本质矩阵 E,恢复出相机的运动 R, t。这个过程是由奇异值分解(SVD)得到的。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
|
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>
// #include "extra.h" // use this if in OpenCV2
using namespace std;
using namespace cv;
/****************************************************
* 本程序演示了如何使用2D-2D的特征匹配估计相机运动
* **************************************************/
void find_feature_matches (
const Mat& img_1, const Mat& img_2,
std::vector<KeyPoint>& keypoints_1,
std::vector<KeyPoint>& keypoints_2,
std::vector< DMatch >& matches );
void pose_estimation_2d2d (
std::vector<KeyPoint> keypoints_1,
std::vector<KeyPoint> keypoints_2,
std::vector< DMatch > matches,
Mat& R, Mat& t );
// 像素坐标转相机归一化坐标
Point2d pixel2cam ( const Point2d& p, const Mat& K );
int main ( int argc, char** argv )
{
if ( argc != 3 )
{
cout<<"usage: pose_estimation_2d2d img1 img2"<<endl;
return 1;
}
//-- 读取图像
Mat img_1 = imread ( argv[1], CV_LOAD_IMAGE_COLOR );
Mat img_2 = imread ( argv[2], CV_LOAD_IMAGE_COLOR );
vector<KeyPoint> keypoints_1, keypoints_2;
vector<DMatch> matches;
find_feature_matches ( img_1, img_2, keypoints_1, keypoints_2, matches );
cout<<"一共找到了"<<matches.size() <<"组匹配点"<<endl;
//-- 估计两张图像间运动
Mat R,t;
pose_estimation_2d2d ( keypoints_1, keypoints_2, matches, R, t );
//-- 验证E=t^R*scale
Mat t_x = ( Mat_<double> ( 3,3 ) <<
0, -t.at<double> ( 2,0 ), t.at<double> ( 1,0 ),
t.at<double> ( 2,0 ), 0, -t.at<double> ( 0,0 ),
-t.at<double> ( 1.0 ), t.at<double> ( 0,0 ), 0 );
cout<<"t^R="<<endl<<t_x*R<<endl;
//-- 验证对极约束
Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );
for ( DMatch m: matches )
{
Point2d pt1 = pixel2cam ( keypoints_1[ m.queryIdx ].pt, K );
Mat y1 = ( Mat_<double> ( 3,1 ) << pt1.x, pt1.y, 1 );
Point2d pt2 = pixel2cam ( keypoints_2[ m.trainIdx ].pt, K );
Mat y2 = ( Mat_<double> ( 3,1 ) << pt2.x, pt2.y, 1 );
Mat d = y2.t() * t_x * R * y1;
cout << "epipolar constraint = " << d << endl;
}
return 0;
}
void find_feature_matches ( const Mat& img_1, const Mat& img_2,
std::vector<KeyPoint>& keypoints_1,
std::vector<KeyPoint>& keypoints_2,
std::vector< DMatch >& matches )
{
//-- 初始化
Mat descriptors_1, descriptors_2;
// used in OpenCV3
Ptr<FeatureDetector> detector = ORB::create();
Ptr<DescriptorExtractor> descriptor = ORB::create();
// use this if you are in OpenCV2
// Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );
// Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create ( "BruteForce-Hamming" );
//-- 第一步:检测 Oriented FAST 角点位置
detector->detect ( img_1,keypoints_1 );
detector->detect ( img_2,keypoints_2 );
//-- 第二步:根据角点位置计算 BRIEF 描述子
descriptor->compute ( img_1, keypoints_1, descriptors_1 );
descriptor->compute ( img_2, keypoints_2, descriptors_2 );
//-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
vector<DMatch> match;
//BFMatcher matcher ( NORM_HAMMING );
matcher->match ( descriptors_1, descriptors_2, match );
//-- 第四步:匹配点对筛选
double min_dist=10000, max_dist=0;
//找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
for ( int i = 0; i < descriptors_1.rows; i++ )
{
double dist = match[i].distance;
if ( dist < min_dist ) min_dist = dist;
if ( dist > max_dist ) max_dist = dist;
}
printf ( "-- Max dist : %f \n", max_dist );
printf ( "-- Min dist : %f \n", min_dist );
//当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
for ( int i = 0; i < descriptors_1.rows; i++ )
{
if ( match[i].distance <= max ( 2*min_dist, 30.0 ) )
{
matches.push_back ( match[i] );
}
}
}
Point2d pixel2cam ( const Point2d& p, const Mat& K )
{
return Point2d
(
( p.x - K.at<double> ( 0,2 ) ) / K.at<double> ( 0,0 ),
( p.y - K.at<double> ( 1,2 ) ) / K.at<double> ( 1,1 )
);
}
void pose_estimation_2d2d ( std::vector<KeyPoint> keypoints_1,
std::vector<KeyPoint> keypoints_2,
std::vector< DMatch > matches,
Mat& R, Mat& t )
{
// 相机内参,TUM Freiburg2
Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );
//-- 把匹配点转换为vector<Point2f>的形式
vector<Point2f> points1;
vector<Point2f> points2;
for ( int i = 0; i < ( int ) matches.size(); i++ )
{
points1.push_back ( keypoints_1[matches[i].queryIdx].pt );
points2.push_back ( keypoints_2[matches[i].trainIdx].pt );
}
//-- 计算基础矩阵
Mat fundamental_matrix;
fundamental_matrix = findFundamentalMat ( points1, points2, CV_FM_8POINT );
cout<<"fundamental_matrix is "<<endl<< fundamental_matrix<<endl;
//-- 计算本质矩阵
Point2d principal_point ( 325.1, 249.7 ); //相机光心, TUM dataset标定值
double focal_length = 521; //相机焦距, TUM dataset标定值
Mat essential_matrix;
essential_matrix = findEssentialMat ( points1, points2, focal_length, principal_point );
cout<<"essential_matrix is "<<endl<< essential_matrix<<endl;
//-- 计算单应矩阵
Mat homography_matrix;
homography_matrix = findHomography ( points1, points2, RANSAC, 3 );
cout<<"homography_matrix is "<<endl<<homography_matrix<<endl;
//-- 从本质矩阵中恢复旋转和平移信息.
recoverPose ( essential_matrix, points1, points2, R, t, focal_length, principal_point );
cout<<"R is "<<endl<<R<<endl;
cout<<"t is "<<endl<<t<<endl;
}
|
在使用对极几何约束估计了相机运动后,下一步我们需要用相机的运动估计特征点的空间位置。在单目 SLAM 中,仅通过单张图像无法获得像素的深度信息,我们需要通过三角测量(Triangulation)(或三角化)的方法来估计地图点的深度。如下图:
按照对极几何中的定义,设$\boldsymbol{x}{1}, \boldsymbol{x}{2}$ 为两个特征点的归一化坐标,有:
$$
s_{1} \boldsymbol{x}_{1}=s_{2} \boldsymbol{R} \boldsymbol{x}_{2}+\boldsymbol{t}
$$
要算 $s_{2}$ ,那么先对上式两侧左乘一个 $\boldsymbol{x}_{1}^{\wedge}$,
$$
s_{1} \boldsymbol{x}_{1}^{\wedge} \boldsymbol{x}_{1}=0=s_{2} \boldsymbol{x}_{1}^{\wedge} \boldsymbol{R} \boldsymbol{x}_{2}+\boldsymbol{x}_{1}^{\wedge} \boldsymbol{t}
$$
右侧可看成 $s_{2}$的一个方程,可以根据它直接求得 $s_{2}$ 。有了 $s_{2},s_{1}$也非常容易求出。于是,我们就得到了两个帧下的点的深度,确定了它们的空间坐标。由于噪声的存在,我们估得的 $\boldsymbol{R}, \boldsymbol{t}$,不一定精确使上式为零,所以更常见的做法求最小二乘解而不是零解。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
|
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>
// #include "extra.h" // used in opencv2
using namespace std;
using namespace cv;
void find_feature_matches (
const Mat& img_1, const Mat& img_2,
std::vector<KeyPoint>& keypoints_1,
std::vector<KeyPoint>& keypoints_2,
std::vector< DMatch >& matches );
void pose_estimation_2d2d (
const std::vector<KeyPoint>& keypoints_1,
const std::vector<KeyPoint>& keypoints_2,
const std::vector< DMatch >& matches,
Mat& R, Mat& t );
void triangulation (
const vector<KeyPoint>& keypoint_1,
const vector<KeyPoint>& keypoint_2,
const std::vector< DMatch >& matches,
const Mat& R, const Mat& t,
vector<Point3d>& points
);
// 像素坐标转相机归一化坐标
Point2f pixel2cam( const Point2d& p, const Mat& K );
int main ( int argc, char** argv )
{
if ( argc != 3 )
{
cout<<"usage: triangulation img1 img2"<<endl;
return 1;
}
//-- 读取图像
Mat img_1 = imread ( argv[1], CV_LOAD_IMAGE_COLOR );
Mat img_2 = imread ( argv[2], CV_LOAD_IMAGE_COLOR );
vector<KeyPoint> keypoints_1, keypoints_2;
vector<DMatch> matches;
find_feature_matches ( img_1, img_2, keypoints_1, keypoints_2, matches );
cout<<"一共找到了"<<matches.size() <<"组匹配点"<<endl;
//-- 估计两张图像间运动
Mat R,t;
pose_estimation_2d2d ( keypoints_1, keypoints_2, matches, R, t );
//-- 三角化
vector<Point3d> points;
triangulation( keypoints_1, keypoints_2, matches, R, t, points );
//-- 验证三角化点与特征点的重投影关系
Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );
for ( int i=0; i<matches.size(); i++ )
{
Point2d pt1_cam = pixel2cam( keypoints_1[ matches[i].queryIdx ].pt, K );
Point2d pt1_cam_3d(
points[i].x/points[i].z,
points[i].y/points[i].z
);
cout<<"point in the first camera frame: "<<pt1_cam<<endl;
cout<<"point projected from 3D "<<pt1_cam_3d<<", d="<<points[i].z<<endl;
// 第二个图
Point2f pt2_cam = pixel2cam( keypoints_2[ matches[i].trainIdx ].pt, K );
Mat pt2_trans = R*( Mat_<double>(3,1) << points[i].x, points[i].y, points[i].z ) + t;
pt2_trans /= pt2_trans.at<double>(2,0);
cout<<"point in the second camera frame: "<<pt2_cam<<endl;
cout<<"point reprojected from second frame: "<<pt2_trans.t()<<endl;
cout<<endl;
}
return 0;
}
void find_feature_matches ( const Mat& img_1, const Mat& img_2,
std::vector<KeyPoint>& keypoints_1,
std::vector<KeyPoint>& keypoints_2,
std::vector< DMatch >& matches )
{
//-- 初始化
Mat descriptors_1, descriptors_2;
// used in OpenCV3
Ptr<FeatureDetector> detector = ORB::create();
Ptr<DescriptorExtractor> descriptor = ORB::create();
// use this if you are in OpenCV2
// Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );
// Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
//-- 第一步:检测 Oriented FAST 角点位置
detector->detect ( img_1,keypoints_1 );
detector->detect ( img_2,keypoints_2 );
//-- 第二步:根据角点位置计算 BRIEF 描述子
descriptor->compute ( img_1, keypoints_1, descriptors_1 );
descriptor->compute ( img_2, keypoints_2, descriptors_2 );
//-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
vector<DMatch> match;
// BFMatcher matcher ( NORM_HAMMING );
matcher->match ( descriptors_1, descriptors_2, match );
//-- 第四步:匹配点对筛选
double min_dist=10000, max_dist=0;
//找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
for ( int i = 0; i < descriptors_1.rows; i++ )
{
double dist = match[i].distance;
if ( dist < min_dist ) min_dist = dist;
if ( dist > max_dist ) max_dist = dist;
}
printf ( "-- Max dist : %f \n", max_dist );
printf ( "-- Min dist : %f \n", min_dist );
//当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
for ( int i = 0; i < descriptors_1.rows; i++ )
{
if ( match[i].distance <= max ( 2*min_dist, 30.0 ) )
{
matches.push_back ( match[i] );
}
}
}
void pose_estimation_2d2d (
const std::vector<KeyPoint>& keypoints_1,
const std::vector<KeyPoint>& keypoints_2,
const std::vector< DMatch >& matches,
Mat& R, Mat& t )
{
// 相机内参,TUM Freiburg2
Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );
//-- 把匹配点转换为vector<Point2f>的形式
vector<Point2f> points1;
vector<Point2f> points2;
for ( int i = 0; i < ( int ) matches.size(); i++ )
{
points1.push_back ( keypoints_1[matches[i].queryIdx].pt );
points2.push_back ( keypoints_2[matches[i].trainIdx].pt );
}
//-- 计算基础矩阵
Mat fundamental_matrix;
fundamental_matrix = findFundamentalMat ( points1, points2, CV_FM_8POINT );
cout<<"fundamental_matrix is "<<endl<< fundamental_matrix<<endl;
//-- 计算本质矩阵
Point2d principal_point ( 325.1, 249.7 ); //相机主点, TUM dataset标定值
int focal_length = 521; //相机焦距, TUM dataset标定值
Mat essential_matrix;
essential_matrix = findEssentialMat ( points1, points2, focal_length, principal_point );
cout<<"essential_matrix is "<<endl<< essential_matrix<<endl;
//-- 计算单应矩阵
Mat homography_matrix;
homography_matrix = findHomography ( points1, points2, RANSAC, 3 );
cout<<"homography_matrix is "<<endl<<homography_matrix<<endl;
//-- 从本质矩阵中恢复旋转和平移信息.
recoverPose ( essential_matrix, points1, points2, R, t, focal_length, principal_point );
cout<<"R is "<<endl<<R<<endl;
cout<<"t is "<<endl<<t<<endl;
}
void triangulation (
const vector< KeyPoint >& keypoint_1,
const vector< KeyPoint >& keypoint_2,
const std::vector< DMatch >& matches,
const Mat& R, const Mat& t,
vector< Point3d >& points )
{
Mat T1 = (Mat_<float> (3,4) <<
1,0,0,0,
0,1,0,0,
0,0,1,0);
Mat T2 = (Mat_<float> (3,4) <<
R.at<double>(0,0), R.at<double>(0,1), R.at<double>(0,2), t.at<double>(0,0),
R.at<double>(1,0), R.at<double>(1,1), R.at<double>(1,2), t.at<double>(1,0),
R.at<double>(2,0), R.at<double>(2,1), R.at<double>(2,2), t.at<double>(2,0)
);
Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );
vector<Point2f> pts_1, pts_2;
for ( DMatch m:matches )
{
// 将像素坐标转换至相机坐标
pts_1.push_back ( pixel2cam( keypoint_1[m.queryIdx].pt, K) );
pts_2.push_back ( pixel2cam( keypoint_2[m.trainIdx].pt, K) );
}
Mat pts_4d;
cv::triangulatePoints( T1, T2, pts_1, pts_2, pts_4d );
// 转换成非齐次坐标
for ( int i=0; i<pts_4d.cols; i++ )
{
Mat x = pts_4d.col(i);
x /= x.at<float>(3,0); // 归一化
Point3d p (
x.at<float>(0,0),
x.at<float>(1,0),
x.at<float>(2,0)
);
points.push_back( p );
}
}
Point2f pixel2cam ( const Point2d& p, const Mat& K )
{
return Point2f
(
( p.x - K.at<double>(0,2) ) / K.at<double>(0,0),
( p.y - K.at<double>(1,2) ) / K.at<double>(1,1)
);
}
|
PnP(Perspective-n-Point)是求解 3D 到 2D 点对运动的方法。它描述了当我们知道n 个 3D 空间点以及它们的投影位置时,如何估计相机所在的位姿。PnP 问题有很多种求解方法,例如用三对点估计位姿的 P3P,直接线性变换(DLT),EPnP(Efficient PnP),UPnP 等等。此外,还能用非线性优化的方式,构建最
小二乘问题并迭代求解,也就是 Bundle Adjustment。
考虑某个空间点 $\boldsymbol{P}$ ,它的齐次坐标为 $\boldsymbol{P}=(X, Y, Z, 1)^{T}$ 。在图像 $\boldsymbol{I_{1}}$ 中,投影到特征点$\boldsymbol{x}_{1}=\left(u_{1}, v_{1}, 1\right)^{T}$ (以归一化平面齐次坐标表示)。此时相机的位姿 $\boldsymbol{R}, \boldsymbol{t}$是未知的。与单应矩阵的求解类似,我们定义增广矩阵 $[\boldsymbol{R} | \boldsymbol{t}]$ 为一个 3 × 4 的矩阵,包含了旋转与平移信息 。
$$
s\left(\begin{array}{c}{u_{1}} \\ {v_{1}} \\ {1}\end{array}\right)=\left(\begin{array}{cccc}{t_{1}} & {t_{2}} & {t_{3}} & {t_{4}} \\ {t_{5}} & {t_{6}} & {t_{7}} & {t_{8}} \\ {t_{9}} & {t_{10}} & {t_{11}} & {t_{12}}\end{array}\right)\left(\begin{array}{l}{X} \\ {Y} \\ {Z} \\ {1}\end{array}\right)
$$
用最后一行把 s 消去,得到两个约束:
$$
u_{1}=\frac{t_{1} X+t_{2} Y+t_{3} Z+t_{4}}{t_{9} X+t_{10} Y+t_{11} Z+t_{12}} \quad v_{1}=\frac{t_{5} X+t_{6} Y+t_{7} Z+t_{8}}{t_{9} X+t_{10} Y+t_{11} Z+t_{12}}
$$
定义:
$$
t_{1}=\left(t_{1}, t_{2}, t_{3}, t_{4}\right)^{T}, t_{2}=\left(t_{5}, t_{6}, t_{7}, t_{8}\right)^{T}, t_{3}=\left(t_{9}, t_{10}, t_{11}, t_{12}\right)^{T}
$$
于是有:
$$
\begin{array}{l}{\boldsymbol{t}_{1}^{T} \boldsymbol{P}-\boldsymbol{t}_{3}^{T} \boldsymbol{P} u_{1}=0} \ {\boldsymbol{t}_{2}^{T} \boldsymbol{P}-\boldsymbol{t}_{3}^{T} \boldsymbol{P} v_{1}=0}\end{array}
$$
假设一共有 N 个特征点,可以列出线性方程组:
$$
\left(\begin{array}{ccc}{\boldsymbol{P}_{1}^{T}} & {0} & {-u_{1} \boldsymbol{P}_{1}^{T}} \\ {0} & {\boldsymbol{P}_{1}^{T}} & {-v_{1} \boldsymbol{P}_{1}^{T}} \\ {\vdots} & {\vdots} & {\vdots} \\ {\boldsymbol{P}_{N}^{T}} & {0} & {-u_{N} \boldsymbol{P}_{N}^{T}} \\ {0} & {\boldsymbol{P}_{N}^{T}} & {-v_{N} \boldsymbol{P}_{N}^{T}}\end{array}\right)\left(\begin{array}{l}{t_{1}} \\ {t_{2}} \\ {t_{3}}\end{array}\right)=0
$$
由于 $\boldsymbol{t}$一共有 12 维,因此最少通过六对匹配点,即可实现矩阵 $\boldsymbol{T}$ 的线性求解,这种方法(也)称为直接线性变换(Direct Linear Transform, DLT)。在 DLT 求解可以由 QR 分解完成 ,相当于把结果从矩阵空间重新投影到 SE(3) 流形上,转换成旋转和平移两部分。
前面说的线性方法,往往是先求相机位姿,再求空间点位置,而非线性优化则是把它们都看成优化变量,放在一起优化。这是一种非常通用的求解方式,我们可以用它对 PnP 或 ICP 给出的结果进行优化。在 PnP 中,这个 Bundle Adjustment 问题,是一个最小化重投影误差(Reprojection error)的问题。
考虑 n 个三维空间点 P 和它们的投影 p,我们希望计算相机的位姿 $\boldsymbol{R}, \boldsymbol{t}$它的李代数表示为 $\boldsymbol{\xi}$。假设某空间点坐标为:$\boldsymbol{P}_{i}=\left[X_{i}, Y_{i}, Z_{i}\right]^{T}$ ,其投影的像素坐标为 $\boldsymbol{u}_{i}=\left[u_{i}, v_{i}\right]^{T}$ 。
像素位置与空间点位置的关系如下:
$$
s_{i}\left[\begin{array}{c}{u_{i}} \\ {v_{i}} \\ {1}\end{array}\right]=\boldsymbol{K} \exp \left(\boldsymbol{\xi}^{\wedge}\right)\left[\begin{array}{c}{X_{i}} \\ {Y_{i}} \\ {Z_{i}} \\ {1}\end{array}\right]
$$
写成矩阵形式就是:
$$
s_{i} \boldsymbol{u}_{i}=\boldsymbol{K} \exp \left(\boldsymbol{\xi}^{\wedge}\right) \boldsymbol{P}_{i}
$$
我们把误差求和,构建最小二乘问题,然后寻找最好的相机位姿,使它最小化:
$$
\xi^{*}=\arg \min _{\xi} \frac{1}{2} \sum_{i=1}^{n}\left|u_{i}-\frac{1}{s_{i}} K \exp \left(\xi^{\wedge}\right) P_{i}\right|_{2}^{2}
$$
该问题的误差项,是将像素坐标(观测到的投影位置)与 3D 点按照当前估计的位姿进行投影得到的位置相比较得到的误差,所以称之为重投影误差。可以通过 G-N, L-M 等优化算法进行求解。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <Eigen/Core>
#include <Eigen/Geometry>
#include <g2o/core/base_vertex.h>
#include <g2o/core/base_unary_edge.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/optimization_algorithm_levenberg.h>
#include <g2o/solvers/csparse/linear_solver_csparse.h>
#include <g2o/types/sba/types_six_dof_expmap.h>
#include <chrono>
using namespace std;
using namespace cv;
void find_feature_matches (
const Mat& img_1, const Mat& img_2,
std::vector<KeyPoint>& keypoints_1,
std::vector<KeyPoint>& keypoints_2,
std::vector< DMatch >& matches );
// 像素坐标转相机归一化坐标
Point2d pixel2cam ( const Point2d& p, const Mat& K );
void bundleAdjustment (
const vector<Point3f> points_3d,
const vector<Point2f> points_2d,
const Mat& K,
Mat& R, Mat& t
);
int main ( int argc, char** argv )
{
if ( argc != 5 )
{
cout<<"usage: pose_estimation_3d2d img1 img2 depth1 depth2"<<endl;
return 1;
}
//-- 读取图像
Mat img_1 = imread ( argv[1], CV_LOAD_IMAGE_COLOR );
Mat img_2 = imread ( argv[2], CV_LOAD_IMAGE_COLOR );
vector<KeyPoint> keypoints_1, keypoints_2;
vector<DMatch> matches;
find_feature_matches ( img_1, img_2, keypoints_1, keypoints_2, matches );
cout<<"一共找到了"<<matches.size() <<"组匹配点"<<endl;
// 建立3D点
Mat d1 = imread ( argv[3], CV_LOAD_IMAGE_UNCHANGED ); // 深度图为16位无符号数,单通道图像
Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );
vector<Point3f> pts_3d;
vector<Point2f> pts_2d;
for ( DMatch m:matches )
{
ushort d = d1.ptr<unsigned short> (int ( keypoints_1[m.queryIdx].pt.y )) [ int ( keypoints_1[m.queryIdx].pt.x ) ];
if ( d == 0 ) // bad depth
continue;
float dd = d/5000.0;
Point2d p1 = pixel2cam ( keypoints_1[m.queryIdx].pt, K );
pts_3d.push_back ( Point3f ( p1.x*dd, p1.y*dd, dd ) );
pts_2d.push_back ( keypoints_2[m.trainIdx].pt );
}
cout<<"3d-2d pairs: "<<pts_3d.size() <<endl;
Mat r, t;
solvePnP ( pts_3d, pts_2d, K, Mat(), r, t, false ); // 调用OpenCV 的 PnP 求解,可选择EPNP,DLS等方法
Mat R;
cv::Rodrigues ( r, R ); // r为旋转向量形式,用Rodrigues公式转换为矩阵
cout<<"R="<<endl<<R<<endl;
cout<<"t="<<endl<<t<<endl;
cout<<"calling bundle adjustment"<<endl;
bundleAdjustment ( pts_3d, pts_2d, K, R, t );
}
void find_feature_matches ( const Mat& img_1, const Mat& img_2,
std::vector<KeyPoint>& keypoints_1,
std::vector<KeyPoint>& keypoints_2,
std::vector< DMatch >& matches )
{
//-- 初始化
Mat descriptors_1, descriptors_2;
// used in OpenCV3
Ptr<FeatureDetector> detector = ORB::create();
Ptr<DescriptorExtractor> descriptor = ORB::create();
// use this if you are in OpenCV2
// Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );
// Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create ( "BruteForce-Hamming" );
//-- 第一步:检测 Oriented FAST 角点位置
detector->detect ( img_1,keypoints_1 );
detector->detect ( img_2,keypoints_2 );
//-- 第二步:根据角点位置计算 BRIEF 描述子
descriptor->compute ( img_1, keypoints_1, descriptors_1 );
descriptor->compute ( img_2, keypoints_2, descriptors_2 );
//-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
vector<DMatch> match;
// BFMatcher matcher ( NORM_HAMMING );
matcher->match ( descriptors_1, descriptors_2, match );
//-- 第四步:匹配点对筛选
double min_dist=10000, max_dist=0;
//找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
for ( int i = 0; i < descriptors_1.rows; i++ )
{
double dist = match[i].distance;
if ( dist < min_dist ) min_dist = dist;
if ( dist > max_dist ) max_dist = dist;
}
printf ( "-- Max dist : %f \n", max_dist );
printf ( "-- Min dist : %f \n", min_dist );
//当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
for ( int i = 0; i < descriptors_1.rows; i++ )
{
if ( match[i].distance <= max ( 2*min_dist, 30.0 ) )
{
matches.push_back ( match[i] );
}
}
}
Point2d pixel2cam ( const Point2d& p, const Mat& K )
{
return Point2d
(
( p.x - K.at<double> ( 0,2 ) ) / K.at<double> ( 0,0 ),
( p.y - K.at<double> ( 1,2 ) ) / K.at<double> ( 1,1 )
);
}
// 在这个图优化中,节点和边的选择为:
// 1.节点:第二个相机的位姿节点 ξ ∈ se(3),以及所有特征点的空间位置 P ∈ R 3 。
// 2.边:每个 3D 点在第二个相机中的投影
void bundleAdjustment (
const vector< Point3f > points_3d,
const vector< Point2f > points_2d,
const Mat& K,
Mat& R, Mat& t )
{
// 初始化g2o
typedef g2o::BlockSolver< g2o::BlockSolverTraits<6,3> > Block; // pose 维度为 6, landmark 维度为 3
Block::LinearSolverType* linearSolver = new g2o::LinearSolverCSparse<Block::PoseMatrixType>(); // 线性方程求解器
Block* solver_ptr = new Block ( linearSolver ); // 矩阵块求解器
g2o::OptimizationAlgorithmLevenberg* solver = new g2o::OptimizationAlgorithmLevenberg ( solver_ptr );
g2o::SparseOptimizer optimizer;
optimizer.setAlgorithm ( solver );
// vertex
g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap(); // camera pose
Eigen::Matrix3d R_mat;
R_mat <<
R.at<double> ( 0,0 ), R.at<double> ( 0,1 ), R.at<double> ( 0,2 ),
R.at<double> ( 1,0 ), R.at<double> ( 1,1 ), R.at<double> ( 1,2 ),
R.at<double> ( 2,0 ), R.at<double> ( 2,1 ), R.at<double> ( 2,2 );
pose->setId ( 0 );
pose->setEstimate ( g2o::SE3Quat (
R_mat,
Eigen::Vector3d ( t.at<double> ( 0,0 ), t.at<double> ( 1,0 ), t.at<double> ( 2,0 ) )
) );
optimizer.addVertex ( pose );
int index = 1;
for ( const Point3f p:points_3d ) // landmarks
{
g2o::VertexSBAPointXYZ* point = new g2o::VertexSBAPointXYZ();
point->setId ( index++ );
point->setEstimate ( Eigen::Vector3d ( p.x, p.y, p.z ) );
point->setMarginalized ( true ); // g2o 中必须设置 marg 参见第十讲内容
optimizer.addVertex ( point );
}
// parameter: camera intrinsics
g2o::CameraParameters* camera = new g2o::CameraParameters (
K.at<double> ( 0,0 ), Eigen::Vector2d ( K.at<double> ( 0,2 ), K.at<double> ( 1,2 ) ), 0
);
camera->setId ( 0 );
optimizer.addParameter ( camera );
// edges
index = 1;
for ( const Point2f p:points_2d )
{
//投影边方程
g2o::EdgeProjectXYZ2UV* edge = new g2o::EdgeProjectXYZ2UV();
edge->setId ( index );
// 空间点位置
edge->setVertex ( 0, dynamic_cast<g2o::VertexSBAPointXYZ*> ( optimizer.vertex ( index ) ) );
// 位姿
edge->setVertex ( 1, pose );
edge->setMeasurement ( Eigen::Vector2d ( p.x, p.y ) );
edge->setParameterId ( 0,0 );
edge->setInformation ( Eigen::Matrix2d::Identity() );
optimizer.addEdge ( edge );
index++;
}
chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
optimizer.setVerbose ( true );
optimizer.initializeOptimization();
optimizer.optimize ( 100 );
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>> ( t2-t1 );
cout<<"optimization costs time: "<<time_used.count() <<" seconds."<<endl;
cout<<endl<<"after optimization:"<<endl;
cout<<"T="<<endl<<Eigen::Isometry3d ( pose->estimate() ).matrix() <<endl;
}
|
假设我们有一组配对好的 3D 点(比如我们对两个 RGB-D 图像进行了匹配):
$$
\boldsymbol{P}=(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{n}), \quad \boldsymbol{P}^{\prime}=(\boldsymbol{p}_{1}^{\prime}, \ldots, \boldsymbol{p}_{n}^{\prime})
$$
现在,想要找一个欧氏变换 $\boldsymbol{R}, \boldsymbol{t}$,使得:
$$
\forall i, \boldsymbol{p}_{i}=\boldsymbol{R} \boldsymbol{p}_{i}^{\prime}+\boldsymbol{t}
$$
这个问题可以用迭代最近点(Iterative Closest Point, ICP)求解。ICP 的求解也分为两种方式:利用线性代数的求解(主要是 SVD),以及利用非线性优化方式的求解(类似于 Bundle Adjustment)。
我们先定义第 i对点的误差项:
$$
e_{i}=p_{i}-\left(R p_{i}^{\prime}+t\right)
$$
然后,构建最小二乘问题,求使误差平方和达到极小的 $\boldsymbol{R}, \boldsymbol{t} $:
$$
\min _{\boldsymbol{R}, \boldsymbol{t}} J=\frac{1}{2} \sum_{i=1}^{n}\left|\left(\boldsymbol{p}_{i}-\left(\boldsymbol{R} \boldsymbol{p}_{i}^{\prime}+\boldsymbol{t}\right)\right)\right|_{2}^{2}
$$
首先,定义两组点的质心:
$$
\boldsymbol{p}=\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{p}_{i}\right), \quad \boldsymbol{p}^{\prime}=\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{p}_{i}^{\prime}\right)
$$
随后,在误差函数中,我们作如下的处理:
$$
\begin{aligned} \frac{1}{2} \sum_{i=1}^{n}\left|\boldsymbol{p}_{i}-\left(\boldsymbol{R} \boldsymbol{p}_{i}^{\prime}+\boldsymbol{t}\right)\right|^{2} &=\frac{1}{2} \sum_{i=1}^{n}\left|\boldsymbol{p}_{i}-\boldsymbol{R} \boldsymbol{p}_{i}^{\prime}-\boldsymbol{t}-\boldsymbol{p}+\boldsymbol{R} \boldsymbol{p}^{\prime}+\boldsymbol{p}-\boldsymbol{R} \boldsymbol{p}^{\prime}\right|^{2} \\ &=\frac{1}{2} \sum_{i=1}^{n}\left|\left(\boldsymbol{p}_{i}-\boldsymbol{p}-\boldsymbol{R}\left(\boldsymbol{p}_{i}^{\prime}-\boldsymbol{p}^{\prime}\right)\right)+\left(\boldsymbol{p}-\boldsymbol{R} \boldsymbol{p}^{\prime}-\boldsymbol{t}\right)\right|^{2} \\ &=\frac{1}{2} \sum_{i=1}^{n}\left(\left|\boldsymbol{p}_{i}-\boldsymbol{p}-\boldsymbol{R}\left(\boldsymbol{p}_{i}^{\prime}-\boldsymbol{p}^{\prime}\right)\right|^{2}+\left|\boldsymbol{p}-\boldsymbol{R} \boldsymbol{p}^{\prime}-\boldsymbol{t}\right|^{2}+\right.\\ &\left.2\left(\boldsymbol{p}_{i}-\boldsymbol{p}-\boldsymbol{R}\left(\boldsymbol{p}_{i}^{\prime}-\boldsymbol{p}^{\prime}\right)\right)^{T}\left(\boldsymbol{p}-\boldsymbol{R} \boldsymbol{p}^{\prime}-\boldsymbol{t}\right)\right) \end{aligned}
$$
注意到交叉项部分中,$\left(\boldsymbol{p}_{i}-\boldsymbol{p}-\boldsymbol{R}\left(\boldsymbol{p}_{i}^{\prime}-\boldsymbol{p}^{\prime}\right)\right)$ 在求和之后是为零的,因此优化目标函
数可以简化为:
$$
\min _{\boldsymbol{R}, \boldsymbol{t}} J=\frac{1}{2} \sum_{i=1}^{n}\left|\boldsymbol{p}_{i}-\boldsymbol{p}-\boldsymbol{R}\left(\boldsymbol{p}_{i}^{\prime}-\boldsymbol{p}^{\prime}\right)\right|^{2}+\left|\boldsymbol{p}-\boldsymbol{R} \boldsymbol{p}^{\prime}-\boldsymbol{t}\right|^{2}
$$
ICP 可以分为以下三个步骤求解:
1 . 计算两组点的质心位置$\boldsymbol{p},\boldsymbol{p}^{\prime}$ ,然后计算每个点的去质心坐标:
$$
\boldsymbol{q}_{i}=\boldsymbol{p}_{i}-\boldsymbol{p}, \quad \boldsymbol{q}_{i}^{\prime}=\boldsymbol{p}_{i}^{\prime}-\boldsymbol{p}^{\prime}
$$
2 . 根据以下优化问题计算旋转矩阵:
$$
\boldsymbol{R}^{*}=\arg \min _{\boldsymbol{R}} \frac{1}{2} \sum_{i=1}^{n}\left|\boldsymbol{q}_{i}-\boldsymbol{R} \boldsymbol{q}_{i}^{\prime}\right|^{2}
$$
3 . 根据第二步的 $\boldsymbol{R}$,计算 $\boldsymbol{t}$:
展开关于 $\boldsymbol{R}$的误差项,得:
$$
\frac{1}{2} \sum_{i=1}^{n}\left|\boldsymbol{q}_{i}-\boldsymbol{R} \boldsymbol{q}_{i}^{\prime}\right|^{2}=\frac{1}{2} \sum_{i=1}^{n} \boldsymbol{q}_{i}^{T} \boldsymbol{q}_{i}+\boldsymbol{q}_{i}^{\prime T} \boldsymbol{R}^{T} \boldsymbol{R} \boldsymbol{q}_{i}^{\prime}-2 \boldsymbol{q}_{i}^{T} \boldsymbol{R} \boldsymbol{q}_{i}^{\prime}
$$
注意到第一项和 $\boldsymbol{R}$ 无关,第二项由于 $\boldsymbol{R}^{T} \boldsymbol{R}=\boldsymbol{I}$,亦与 R 无关。因此,实际上优化目标函数变为:
$$
\sum_{i=1}^{n}-\boldsymbol{q}_{i}^{T} \boldsymbol{R} \boldsymbol{q}_{i}^{\prime}=\sum_{i=1}^{n}-\operatorname{tr}\left(\boldsymbol{R} \boldsymbol{q}_{i}^{\prime} \boldsymbol{q}_{i}^{T}\right)=-\operatorname{tr}\left(\boldsymbol{R} \sum_{i=1}^{n} \boldsymbol{q}_{i}^{\prime} \boldsymbol{q}_{i}^{T}\right)
$$
由SVD分解,定义:
$$
\boldsymbol{W}=\sum_{i=1}^{n} \boldsymbol{q}_{i}^{\prime} \boldsymbol{q}_{i}^{T}
$$
对 $\boldsymbol{W}$ 进行 SVD 分解:
$$
\boldsymbol{W}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}
$$
当 $\boldsymbol{W}$ 满秩时,$\boldsymbol{R}$ 为:
$$
\boldsymbol{R}=\boldsymbol{U} \boldsymbol{V}^{T}
$$
目标函数可以写成:
$$
\min _{\xi}=\frac{1}{2} \sum_{i=1}^{n}\left|\left(\boldsymbol{p}_{i}-\exp \left(\boldsymbol{\xi}^{\wedge}\right) \boldsymbol{p}_{i}^{\prime}\right)\right|_{2}^{2}
$$
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/features2d/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/calib3d/calib3d.hpp>
#include <Eigen/Core>
#include <Eigen/Geometry>
#include <Eigen/SVD>
#include <g2o/core/base_vertex.h>
#include <g2o/core/base_unary_edge.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/optimization_algorithm_gauss_newton.h>
#include <g2o/solvers/eigen/linear_solver_eigen.h>
#include <g2o/types/sba/types_six_dof_expmap.h>
#include <chrono>
using namespace std;
using namespace cv;
void find_feature_matches (
const Mat& img_1, const Mat& img_2,
std::vector<KeyPoint>& keypoints_1,
std::vector<KeyPoint>& keypoints_2,
std::vector< DMatch >& matches );
// 像素坐标转相机归一化坐标
Point2d pixel2cam ( const Point2d& p, const Mat& K );
void pose_estimation_3d3d (
const vector<Point3f>& pts1,
const vector<Point3f>& pts2,
Mat& R, Mat& t
);
void bundleAdjustment(
const vector<Point3f>& points_3d,
const vector<Point3f>& points_2d,
Mat& R, Mat& t
);
// g2o edge
class EdgeProjectXYZRGBDPoseOnly : public g2o::BaseUnaryEdge<3, Eigen::Vector3d, g2o::VertexSE3Expmap>
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
EdgeProjectXYZRGBDPoseOnly( const Eigen::Vector3d& point ) : _point(point) {}
virtual void computeError()
{
const g2o::VertexSE3Expmap* pose = static_cast<const g2o::VertexSE3Expmap*> ( _vertices[0] );
// measurement is p, point is p'
_error = _measurement - pose->estimate().map( _point );
}
virtual void linearizeOplus()
{
g2o::VertexSE3Expmap* pose = static_cast<g2o::VertexSE3Expmap *>(_vertices[0]);
g2o::SE3Quat T(pose->estimate());
Eigen::Vector3d xyz_trans = T.map(_point);
double x = xyz_trans[0];
double y = xyz_trans[1];
double z = xyz_trans[2];
_jacobianOplusXi(0,0) = 0;
_jacobianOplusXi(0,1) = -z;
_jacobianOplusXi(0,2) = y;
_jacobianOplusXi(0,3) = -1;
_jacobianOplusXi(0,4) = 0;
_jacobianOplusXi(0,5) = 0;
_jacobianOplusXi(1,0) = z;
_jacobianOplusXi(1,1) = 0;
_jacobianOplusXi(1,2) = -x;
_jacobianOplusXi(1,3) = 0;
_jacobianOplusXi(1,4) = -1;
_jacobianOplusXi(1,5) = 0;
_jacobianOplusXi(2,0) = -y;
_jacobianOplusXi(2,1) = x;
_jacobianOplusXi(2,2) = 0;
_jacobianOplusXi(2,3) = 0;
_jacobianOplusXi(2,4) = 0;
_jacobianOplusXi(2,5) = -1;
}
bool read ( istream& in ) {}
bool write ( ostream& out ) const {}
protected:
Eigen::Vector3d _point;
};
int main ( int argc, char** argv )
{
if ( argc != 5 )
{
cout<<"usage: pose_estimation_3d3d img1 img2 depth1 depth2"<<endl;
return 1;
}
//-- 读取图像
Mat img_1 = imread ( argv[1], CV_LOAD_IMAGE_COLOR );
Mat img_2 = imread ( argv[2], CV_LOAD_IMAGE_COLOR );
vector<KeyPoint> keypoints_1, keypoints_2;
vector<DMatch> matches;
find_feature_matches ( img_1, img_2, keypoints_1, keypoints_2, matches );
cout<<"一共找到了"<<matches.size() <<"组匹配点"<<endl;
// 建立3D点
Mat depth1 = imread ( argv[3], CV_LOAD_IMAGE_UNCHANGED ); // 深度图为16位无符号数,单通道图像
Mat depth2 = imread ( argv[4], CV_LOAD_IMAGE_UNCHANGED ); // 深度图为16位无符号数,单通道图像
Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );
vector<Point3f> pts1, pts2;
for ( DMatch m:matches )
{
ushort d1 = depth1.ptr<unsigned short> ( int ( keypoints_1[m.queryIdx].pt.y ) ) [ int ( keypoints_1[m.queryIdx].pt.x ) ];
ushort d2 = depth2.ptr<unsigned short> ( int ( keypoints_2[m.trainIdx].pt.y ) ) [ int ( keypoints_2[m.trainIdx].pt.x ) ];
if ( d1==0 || d2==0 ) // bad depth
continue;
Point2d p1 = pixel2cam ( keypoints_1[m.queryIdx].pt, K );
Point2d p2 = pixel2cam ( keypoints_2[m.trainIdx].pt, K );
float dd1 = float ( d1 ) /5000.0;
float dd2 = float ( d2 ) /5000.0;
pts1.push_back ( Point3f ( p1.x*dd1, p1.y*dd1, dd1 ) );
pts2.push_back ( Point3f ( p2.x*dd2, p2.y*dd2, dd2 ) );
}
cout<<"3d-3d pairs: "<<pts1.size() <<endl;
Mat R, t;
pose_estimation_3d3d ( pts1, pts2, R, t );
cout<<"ICP via SVD results: "<<endl;
cout<<"R = "<<R<<endl;
cout<<"t = "<<t<<endl;
cout<<"R_inv = "<<R.t() <<endl;
cout<<"t_inv = "<<-R.t() *t<<endl;
cout<<"calling bundle adjustment"<<endl;
bundleAdjustment( pts1, pts2, R, t );
// verify p1 = R*p2 + t
for ( int i=0; i<5; i++ )
{
cout<<"p1 = "<<pts1[i]<<endl;
cout<<"p2 = "<<pts2[i]<<endl;
cout<<"(R*p2+t) = "<<
R * (Mat_<double>(3,1)<<pts2[i].x, pts2[i].y, pts2[i].z) + t
<<endl;
cout<<endl;
}
}
void find_feature_matches ( const Mat& img_1, const Mat& img_2,
std::vector<KeyPoint>& keypoints_1,
std::vector<KeyPoint>& keypoints_2,
std::vector< DMatch >& matches )
{
//-- 初始化
Mat descriptors_1, descriptors_2;
// used in OpenCV3
Ptr<FeatureDetector> detector = ORB::create();
Ptr<DescriptorExtractor> descriptor = ORB::create();
// use this if you are in OpenCV2
// Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );
// Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
//-- 第一步:检测 Oriented FAST 角点位置
detector->detect ( img_1,keypoints_1 );
detector->detect ( img_2,keypoints_2 );
//-- 第二步:根据角点位置计算 BRIEF 描述子
descriptor->compute ( img_1, keypoints_1, descriptors_1 );
descriptor->compute ( img_2, keypoints_2, descriptors_2 );
//-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离
vector<DMatch> match;
// BFMatcher matcher ( NORM_HAMMING );
matcher->match ( descriptors_1, descriptors_2, match );
//-- 第四步:匹配点对筛选
double min_dist=10000, max_dist=0;
//找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离
for ( int i = 0; i < descriptors_1.rows; i++ )
{
double dist = match[i].distance;
if ( dist < min_dist ) min_dist = dist;
if ( dist > max_dist ) max_dist = dist;
}
printf ( "-- Max dist : %f \n", max_dist );
printf ( "-- Min dist : %f \n", min_dist );
//当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.
for ( int i = 0; i < descriptors_1.rows; i++ )
{
if ( match[i].distance <= max ( 2*min_dist, 30.0 ) )
{
matches.push_back ( match[i] );
}
}
}
Point2d pixel2cam ( const Point2d& p, const Mat& K )
{
return Point2d
(
( p.x - K.at<double> ( 0,2 ) ) / K.at<double> ( 0,0 ),
( p.y - K.at<double> ( 1,2 ) ) / K.at<double> ( 1,1 )
);
}
void pose_estimation_3d3d (
const vector<Point3f>& pts1,
const vector<Point3f>& pts2,
Mat& R, Mat& t
)
{
Point3f p1, p2; // center of mass
int N = pts1.size();
for ( int i=0; i<N; i++ )
{
p1 += pts1[i];
p2 += pts2[i];
}
p1 = Point3f( Vec3f(p1) / N);
p2 = Point3f( Vec3f(p2) / N);
vector<Point3f> q1 ( N ), q2 ( N ); // remove the center
for ( int i=0; i<N; i++ )
{
q1[i] = pts1[i] - p1;
q2[i] = pts2[i] - p2;
}
// compute q1*q2^T
Eigen::Matrix3d W = Eigen::Matrix3d::Zero();
for ( int i=0; i<N; i++ )
{
W += Eigen::Vector3d ( q1[i].x, q1[i].y, q1[i].z ) * Eigen::Vector3d ( q2[i].x, q2[i].y, q2[i].z ).transpose();
}
cout<<"W="<<W<<endl;
// SVD on W
Eigen::JacobiSVD<Eigen::Matrix3d> svd ( W, Eigen::ComputeFullU|Eigen::ComputeFullV );
Eigen::Matrix3d U = svd.matrixU();
Eigen::Matrix3d V = svd.matrixV();
cout<<"U="<<U<<endl;
cout<<"V="<<V<<endl;
Eigen::Matrix3d R_ = U* ( V.transpose() );
Eigen::Vector3d t_ = Eigen::Vector3d ( p1.x, p1.y, p1.z ) - R_ * Eigen::Vector3d ( p2.x, p2.y, p2.z );
// convert to cv::Mat
R = ( Mat_<double> ( 3,3 ) <<
R_ ( 0,0 ), R_ ( 0,1 ), R_ ( 0,2 ),
R_ ( 1,0 ), R_ ( 1,1 ), R_ ( 1,2 ),
R_ ( 2,0 ), R_ ( 2,1 ), R_ ( 2,2 )
);
t = ( Mat_<double> ( 3,1 ) << t_ ( 0,0 ), t_ ( 1,0 ), t_ ( 2,0 ) );
}
void bundleAdjustment (
const vector< Point3f >& pts1,
const vector< Point3f >& pts2,
Mat& R, Mat& t )
{
// 初始化g2o
typedef g2o::BlockSolver< g2o::BlockSolverTraits<6,3> > Block; // pose维度为 6, landmark 维度为 3
Block::LinearSolverType* linearSolver = new g2o::LinearSolverEigen<Block::PoseMatrixType>(); // 线性方程求解器
Block* solver_ptr = new Block( linearSolver ); // 矩阵块求解器
g2o::OptimizationAlgorithmGaussNewton* solver = new g2o::OptimizationAlgorithmGaussNewton( solver_ptr );
g2o::SparseOptimizer optimizer;
optimizer.setAlgorithm( solver );
// vertex
g2o::VertexSE3Expmap* pose = new g2o::VertexSE3Expmap(); // camera pose
pose->setId(0);
pose->setEstimate( g2o::SE3Quat(
Eigen::Matrix3d::Identity(),
Eigen::Vector3d( 0,0,0 )
) );
optimizer.addVertex( pose );
// edges
int index = 1;
vector<EdgeProjectXYZRGBDPoseOnly*> edges;
for ( size_t i=0; i<pts1.size(); i++ )
{
EdgeProjectXYZRGBDPoseOnly* edge = new EdgeProjectXYZRGBDPoseOnly(
Eigen::Vector3d(pts2[i].x, pts2[i].y, pts2[i].z) );
edge->setId( index );
edge->setVertex( 0, dynamic_cast<g2o::VertexSE3Expmap*> (pose) );
edge->setMeasurement( Eigen::Vector3d(
pts1[i].x, pts1[i].y, pts1[i].z) );
edge->setInformation( Eigen::Matrix3d::Identity()*1e4 );
optimizer.addEdge(edge);
index++;
edges.push_back(edge);
}
chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
optimizer.setVerbose( true );
optimizer.initializeOptimization();
optimizer.optimize(10);
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2-t1);
cout<<"optimization costs time: "<<time_used.count()<<" seconds."<<endl;
cout<<endl<<"after optimization:"<<endl;
cout<<"T="<<endl<<Eigen::Isometry3d( pose->estimate() ).matrix()<<endl;
}
|